Efficiency of the pTF-FC2 pas poison-antidote stability system in Escherichia coli is affected by the host strain, and antidote degradation requires the lon protease.

نویسندگان

  • A S Smith
  • D E Rawlings
چکیده

The stabilization of a test plasmid by the proteic, poison-antidote plasmid addiction system (pas) of plasmid pTF-FC2 was host strain dependent, with a 100-fold increase in stability in Escherichia coli CSH50, a 2.5-fold increase in E. coli JM105, and no detectable stabilization in E. coli strains JM107 and JM109. The lethality of the PasB toxin was far higher in the E. coli strains in which the pas was most effective. Models for the way in which poison-antidote systems stabilize plasmids require that the antidote have a much higher rate of turnover than that of the toxin. A decrease in host cell death following plasmid loss from an E. coli lon mutant and a decrease in plasmid stability suggested that the Lon protease plays a role in the rate of turnover of PasA antidote.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmid evolution and interaction between the plasmid addiction stability systems of two related broad-host-range IncQ-like plasmids.

Plasmid pTC-F14 contains a plasmid stability system called pas (plasmid addiction system), which consists of two proteins, a PasA antitoxin and a PasB toxin. This system is closely related to the pas of plasmid pTF-FC2 (81 and 72% amino acid identity for PasA and PasB, respectively) except that the pas of pTF-FC2 contains a third protein, PasC. As both pTC-F14 and pTF-FC2 are highly promiscuous...

متن کامل

Autoregulation of the pTF-FC2 proteic poison-antidote plasmid addiction system (pas) is essential for plasmid stabilization.

The pasABC genes of the proteic plasmid addiction system of broad-host-range plasmid pTF-FC2 were autoregulated. The PasA antidote was able to repress the operon 25-fold on its own, and repression was increased to 100-fold when the PasB toxin was also present. Autoregulation appears to be an essential requirement for pas-mediated plasmid stabilization because when the pas genes were placed behi...

متن کامل

The highly conserved TldD and TldE proteins of Escherichia coli are involved in microcin B17 processing and in CcdA degradation.

Microcin B17 (MccB17) is a peptide antibiotic produced by Escherichia coli strains carrying the pMccB17 plasmid. MccB17 is synthesized as a precursor containing an amino-terminal leader peptide that is cleaved during maturation. Maturation requires the product of the chromosomal tldE (pmbA) gene. Mature microcin is exported across the cytoplasmic membrane by a dedicated ABC transporter. In sens...

متن کامل

Analysis of the mobilization region of the broad-host-range IncQ-like plasmid pTC-F14 and its ability to interact with a related plasmid, pTF-FC2.

Plasmid pTC-F14 is a 14.2-kb plasmid isolated from Acidithiobacillus caldus that has a replicon that is closely related to the promiscuous, broad-host-range IncQ family of plasmids. The region containing the mobilization genes was sequenced and encoded five Mob proteins that were related to those of the DNA processing (Dtr or Tra1) region of IncP plasmids rather than to the three-Mob-protein sy...

متن کامل

An engineered bacterium auxotrophic for an unnatural amino acid: a novel biological containment system

Biological containment is a genetic technique that programs dangerous organisms to grow only in the laboratory and to die in the natural environment. Auxotrophy for a substance not found in the natural environment is an ideal biological containment. Here, we constructed an Escherichia coli strain that cannot survive in the absence of the unnatural amino acid 3-iodo-L-tyrosine. This synthetic au...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 180 20  شماره 

صفحات  -

تاریخ انتشار 1998